(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0) → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
min(s(x), s(y)) →+ s(min(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0') → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
minus(x, 0') → x
minus(s(x), s(y)) → s(minus(x, y))
gcd(s(x), s(y)) → gcd(minus(max(x, y), min(x, transform(y))), s(min(x, y)))
transform(x) → s(s(x))
transform(cons(x, y)) → cons(cons(x, x), x)
transform(cons(x, y)) → y
transform(s(x)) → s(s(transform(x)))
cons(x, y) → y
cons(x, cons(y, s(z))) → cons(y, x)
cons(cons(x, z), s(y)) → transform(x)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
transform :: 0':s → 0':s
cons :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
min,
max,
minus,
gcd,
transform,
consThey will be analysed ascendingly in the following order:
min < gcd
max < gcd
minus < gcd
transform < gcd
transform = cons
(8) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
y))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
transform(
y))),
s(
min(
x,
y)))
transform(
x) →
s(
s(
x))
transform(
cons(
x,
y)) →
cons(
cons(
x,
x),
x)
transform(
cons(
x,
y)) →
ytransform(
s(
x)) →
s(
s(
transform(
x)))
cons(
x,
y) →
ycons(
x,
cons(
y,
s(
z))) →
cons(
y,
x)
cons(
cons(
x,
z),
s(
y)) →
transform(
x)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
transform :: 0':s → 0':s
cons :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
min, max, minus, gcd, transform, cons
They will be analysed ascendingly in the following order:
min < gcd
max < gcd
minus < gcd
transform < gcd
transform = cons
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
min(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
n5_0), rt ∈ Ω(1 + n5
0)
Induction Base:
min(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
min(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
s(min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0))) →IH
s(gen_0':s3_0(c6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
y))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
transform(
y))),
s(
min(
x,
y)))
transform(
x) →
s(
s(
x))
transform(
cons(
x,
y)) →
cons(
cons(
x,
x),
x)
transform(
cons(
x,
y)) →
ytransform(
s(
x)) →
s(
s(
transform(
x)))
cons(
x,
y) →
ycons(
x,
cons(
y,
s(
z))) →
cons(
y,
x)
cons(
cons(
x,
z),
s(
y)) →
transform(
x)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
transform :: 0':s → 0':s
cons :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
max, minus, gcd, transform, cons
They will be analysed ascendingly in the following order:
max < gcd
minus < gcd
transform < gcd
transform = cons
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
max(
gen_0':s3_0(
n348_0),
gen_0':s3_0(
n348_0)) →
gen_0':s3_0(
n348_0), rt ∈ Ω(1 + n348
0)
Induction Base:
max(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
max(gen_0':s3_0(+(n348_0, 1)), gen_0':s3_0(+(n348_0, 1))) →RΩ(1)
s(max(gen_0':s3_0(n348_0), gen_0':s3_0(n348_0))) →IH
s(gen_0':s3_0(c349_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
y))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
transform(
y))),
s(
min(
x,
y)))
transform(
x) →
s(
s(
x))
transform(
cons(
x,
y)) →
cons(
cons(
x,
x),
x)
transform(
cons(
x,
y)) →
ytransform(
s(
x)) →
s(
s(
transform(
x)))
cons(
x,
y) →
ycons(
x,
cons(
y,
s(
z))) →
cons(
y,
x)
cons(
cons(
x,
z),
s(
y)) →
transform(
x)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
transform :: 0':s → 0':s
cons :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n348_0), gen_0':s3_0(n348_0)) → gen_0':s3_0(n348_0), rt ∈ Ω(1 + n3480)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, gcd, transform, cons
They will be analysed ascendingly in the following order:
minus < gcd
transform < gcd
transform = cons
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s3_0(
n781_0),
gen_0':s3_0(
n781_0)) →
gen_0':s3_0(
n781_0), rt ∈ Ω(1 + n781
0)
Induction Base:
minus(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
minus(gen_0':s3_0(+(n781_0, 1)), gen_0':s3_0(+(n781_0, 1))) →RΩ(1)
s(minus(gen_0':s3_0(n781_0), gen_0':s3_0(n781_0))) →IH
s(gen_0':s3_0(c782_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
y))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
transform(
y))),
s(
min(
x,
y)))
transform(
x) →
s(
s(
x))
transform(
cons(
x,
y)) →
cons(
cons(
x,
x),
x)
transform(
cons(
x,
y)) →
ytransform(
s(
x)) →
s(
s(
transform(
x)))
cons(
x,
y) →
ycons(
x,
cons(
y,
s(
z))) →
cons(
y,
x)
cons(
cons(
x,
z),
s(
y)) →
transform(
x)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
transform :: 0':s → 0':s
cons :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n348_0), gen_0':s3_0(n348_0)) → gen_0':s3_0(n348_0), rt ∈ Ω(1 + n3480)
minus(gen_0':s3_0(n781_0), gen_0':s3_0(n781_0)) → gen_0':s3_0(n781_0), rt ∈ Ω(1 + n7810)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
cons, gcd, transform
They will be analysed ascendingly in the following order:
transform < gcd
transform = cons
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cons.
(19) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
y))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
transform(
y))),
s(
min(
x,
y)))
transform(
x) →
s(
s(
x))
transform(
cons(
x,
y)) →
cons(
cons(
x,
x),
x)
transform(
cons(
x,
y)) →
ytransform(
s(
x)) →
s(
s(
transform(
x)))
cons(
x,
y) →
ycons(
x,
cons(
y,
s(
z))) →
cons(
y,
x)
cons(
cons(
x,
z),
s(
y)) →
transform(
x)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
transform :: 0':s → 0':s
cons :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n348_0), gen_0':s3_0(n348_0)) → gen_0':s3_0(n348_0), rt ∈ Ω(1 + n3480)
minus(gen_0':s3_0(n781_0), gen_0':s3_0(n781_0)) → gen_0':s3_0(n781_0), rt ∈ Ω(1 + n7810)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
transform, gcd
They will be analysed ascendingly in the following order:
transform < gcd
transform = cons
(20) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
transform(
gen_0':s3_0(
+(
1,
n1198_0))) →
*4_0, rt ∈ Ω(n1198
0)
Induction Base:
transform(gen_0':s3_0(+(1, 0)))
Induction Step:
transform(gen_0':s3_0(+(1, +(n1198_0, 1)))) →RΩ(1)
s(s(transform(gen_0':s3_0(+(1, n1198_0))))) →IH
s(s(*4_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(21) Complex Obligation (BEST)
(22) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
y))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
transform(
y))),
s(
min(
x,
y)))
transform(
x) →
s(
s(
x))
transform(
cons(
x,
y)) →
cons(
cons(
x,
x),
x)
transform(
cons(
x,
y)) →
ytransform(
s(
x)) →
s(
s(
transform(
x)))
cons(
x,
y) →
ycons(
x,
cons(
y,
s(
z))) →
cons(
y,
x)
cons(
cons(
x,
z),
s(
y)) →
transform(
x)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
transform :: 0':s → 0':s
cons :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n348_0), gen_0':s3_0(n348_0)) → gen_0':s3_0(n348_0), rt ∈ Ω(1 + n3480)
minus(gen_0':s3_0(n781_0), gen_0':s3_0(n781_0)) → gen_0':s3_0(n781_0), rt ∈ Ω(1 + n7810)
transform(gen_0':s3_0(+(1, n1198_0))) → *4_0, rt ∈ Ω(n11980)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
cons, gcd
They will be analysed ascendingly in the following order:
transform < gcd
transform = cons
(23) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cons.
(24) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
y))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
transform(
y))),
s(
min(
x,
y)))
transform(
x) →
s(
s(
x))
transform(
cons(
x,
y)) →
cons(
cons(
x,
x),
x)
transform(
cons(
x,
y)) →
ytransform(
s(
x)) →
s(
s(
transform(
x)))
cons(
x,
y) →
ycons(
x,
cons(
y,
s(
z))) →
cons(
y,
x)
cons(
cons(
x,
z),
s(
y)) →
transform(
x)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
transform :: 0':s → 0':s
cons :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n348_0), gen_0':s3_0(n348_0)) → gen_0':s3_0(n348_0), rt ∈ Ω(1 + n3480)
minus(gen_0':s3_0(n781_0), gen_0':s3_0(n781_0)) → gen_0':s3_0(n781_0), rt ∈ Ω(1 + n7810)
transform(gen_0':s3_0(+(1, n1198_0))) → *4_0, rt ∈ Ω(n11980)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
gcd
(25) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol gcd.
(26) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
y))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
transform(
y))),
s(
min(
x,
y)))
transform(
x) →
s(
s(
x))
transform(
cons(
x,
y)) →
cons(
cons(
x,
x),
x)
transform(
cons(
x,
y)) →
ytransform(
s(
x)) →
s(
s(
transform(
x)))
cons(
x,
y) →
ycons(
x,
cons(
y,
s(
z))) →
cons(
y,
x)
cons(
cons(
x,
z),
s(
y)) →
transform(
x)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
transform :: 0':s → 0':s
cons :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n348_0), gen_0':s3_0(n348_0)) → gen_0':s3_0(n348_0), rt ∈ Ω(1 + n3480)
minus(gen_0':s3_0(n781_0), gen_0':s3_0(n781_0)) → gen_0':s3_0(n781_0), rt ∈ Ω(1 + n7810)
transform(gen_0':s3_0(+(1, n1198_0))) → *4_0, rt ∈ Ω(n11980)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(28) BOUNDS(n^1, INF)
(29) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
y))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
transform(
y))),
s(
min(
x,
y)))
transform(
x) →
s(
s(
x))
transform(
cons(
x,
y)) →
cons(
cons(
x,
x),
x)
transform(
cons(
x,
y)) →
ytransform(
s(
x)) →
s(
s(
transform(
x)))
cons(
x,
y) →
ycons(
x,
cons(
y,
s(
z))) →
cons(
y,
x)
cons(
cons(
x,
z),
s(
y)) →
transform(
x)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
transform :: 0':s → 0':s
cons :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n348_0), gen_0':s3_0(n348_0)) → gen_0':s3_0(n348_0), rt ∈ Ω(1 + n3480)
minus(gen_0':s3_0(n781_0), gen_0':s3_0(n781_0)) → gen_0':s3_0(n781_0), rt ∈ Ω(1 + n7810)
transform(gen_0':s3_0(+(1, n1198_0))) → *4_0, rt ∈ Ω(n11980)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(31) BOUNDS(n^1, INF)
(32) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
y))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
transform(
y))),
s(
min(
x,
y)))
transform(
x) →
s(
s(
x))
transform(
cons(
x,
y)) →
cons(
cons(
x,
x),
x)
transform(
cons(
x,
y)) →
ytransform(
s(
x)) →
s(
s(
transform(
x)))
cons(
x,
y) →
ycons(
x,
cons(
y,
s(
z))) →
cons(
y,
x)
cons(
cons(
x,
z),
s(
y)) →
transform(
x)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
transform :: 0':s → 0':s
cons :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n348_0), gen_0':s3_0(n348_0)) → gen_0':s3_0(n348_0), rt ∈ Ω(1 + n3480)
minus(gen_0':s3_0(n781_0), gen_0':s3_0(n781_0)) → gen_0':s3_0(n781_0), rt ∈ Ω(1 + n7810)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(34) BOUNDS(n^1, INF)
(35) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
y))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
transform(
y))),
s(
min(
x,
y)))
transform(
x) →
s(
s(
x))
transform(
cons(
x,
y)) →
cons(
cons(
x,
x),
x)
transform(
cons(
x,
y)) →
ytransform(
s(
x)) →
s(
s(
transform(
x)))
cons(
x,
y) →
ycons(
x,
cons(
y,
s(
z))) →
cons(
y,
x)
cons(
cons(
x,
z),
s(
y)) →
transform(
x)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
transform :: 0':s → 0':s
cons :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n348_0), gen_0':s3_0(n348_0)) → gen_0':s3_0(n348_0), rt ∈ Ω(1 + n3480)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(36) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(37) BOUNDS(n^1, INF)
(38) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
s(
minus(
x,
y))
gcd(
s(
x),
s(
y)) →
gcd(
minus(
max(
x,
y),
min(
x,
transform(
y))),
s(
min(
x,
y)))
transform(
x) →
s(
s(
x))
transform(
cons(
x,
y)) →
cons(
cons(
x,
x),
x)
transform(
cons(
x,
y)) →
ytransform(
s(
x)) →
s(
s(
transform(
x)))
cons(
x,
y) →
ycons(
x,
cons(
y,
s(
z))) →
cons(
y,
x)
cons(
cons(
x,
z),
s(
y)) →
transform(
x)
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
minus :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
transform :: 0':s → 0':s
cons :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(39) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(40) BOUNDS(n^1, INF)